

Towards a Covenants Softfork

Who am I?
● Steven Roose
● bitcoin developer since 2012
● building Ark @ Second
● covenants.info

Upgrading Bitcoin
● What is “bitcoin”?
● universally accepted: consensus
● blockchain
● changes to consensus: chain forks

– hardforks
– softforks

Hardfork
● Let’s upgrade from ECDSA to Schnorr!
● output script: <pubkey> OP_CHECKSIGVERIFY

– witness: <ecdsa-sig>
– <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● upgrade to schnorr:
– <schnorr-sig> <pubkey> OP_CHECKSIGVERIFY

Hardfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

Hardfork

ECDSA ECDSA

● <schnorr-sig> <pubkey> OP_CHECKSIGVERIFY

ECDSA
ECDSA

schnorr

Hardfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

ECDSA

schnorr

upgraded

not upgraded

Hardfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

ECDSA

schnorr

upgraded

not upgraded

Hardfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

ECDSA

schnorr

upgraded

not upgraded

Hardfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

ECDSA

schnorr

upgraded

not upgraded

ECDSA

schnorr

Softfork
● Let’s upgrade from ECDSA to Schnorr safely!
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● use an unused opcode
● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

Softfork

EA + A EB + B

● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

EC + CECDSA ECDSA ECDSA

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EA + A EB + B EC + CECDSA ECDSA ECDSA
ECDSA

schnorr

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EA + A EB + B EC + CECDSA ECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

schnorr

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EA + A EB + B EC + CECDSA ECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

schnorr

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EA + A EB + B EC + CECDSA ECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

???

schnorr

Softfork tools
● override only unused behavior

● OP_NOP
– -VERIFY opcodes

● Witness Program
– OP_PUSHNUM_0 <20/32 bytes>

– OP_PUSHNUM_1 <32 bytes>

● OP_SUCCESS

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

???

schnorr

schnorr

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

???

schnorr

???

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

???

schnorr

???

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA

ECDSA

ECDSA

upgraded

not upgraded

???

schnorr

???

Readiness Signaling
● only activate new rules if majority is ready to enforce
● BIP9: miners signal readiness for upgrades

– segwit: 95% of last 2016 blocks

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA ECDSA schnorr

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA ECDSA schnorr

???

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA ECDSA schnorr ECDSA

???

Softfork
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY

EB + B EC + CECDSA ECDSA ECDSA schnorr ECDSA schnorr

???

Technical Challenges
● bugs, bugs and more bugs

– incorrect behavior
– accidental hardforks

● technical debt
– impossible to remove consensus code
– maintenance burden

Political Challenges
● money is a social construction

– bitcoin is a social project

● we need “rough consensus”
● decentralized decision-making
● too loose: can reduce vigilance
● too strict: can reduce innovation

Covenants
● traditionally: “who can spend coins”
● covenants: “how can coins be spent”
● transaction introspection

We already sorta have covenants
● OP_CHECKSIG

– * Schnorr tricks with OP_CAT

● OP_CHECKLOCKTIMEVERIFY
● OP_CHECKSEQUENCEVERIFY

Some examples
● refund clauses

Refund Clauses
● Alice and Bob join their money together
● both want a refund guarantee
● current solution: pre-signing a refund tx
● covenants: refund clause on the joint output

– “can be spent if 1 btc go to Alice and 1 btc goes to Bob”

● reduced interactivity

Some examples
● refund clauses
● vaults, aka delayed spends

Vaults
● just relative timelocks fall short
● specify eventual destination when delay starts
● fallback clause within delay

Some examples
● refund clauses
● vaults, aka delayed spends
● payment pools / coinpools

Coinpools
● single UTXO owned by multiple people
● each user can exit individually

– leaving the remaining users in a new coinpool

● UTXO can live on cooperatively

Other possibilities
● eltoo / lightning symmetry

Lightning symmetry
● different Lightning Network channel design
● “rebindable signatures”

– SIGHASH_NOINPUT aka SIGHASH_ANYPREVOUT

● simplify channel state updates
● no more penalties

Other possibilities
● eltoo / lightning symmetry
● DLCs

DLCs
● oracle-based betting contracts
● computational complexity
● transferability & position splitting

Other possibilities
● eltoo / lightning symmetry
● DLCs
● Ark

Ark
● alternative layer-two

– client-server but with unilateral exit

● VTXOs: off-chain or “virtual UTXOs”
● swap expiring VTXOs for new ones with server
● compatible with Lightning

More complex stuff
● execution trees

– MATT with covenants
– BitVM without covenants

Execution trees
● arbitrary program compiled to Script
● optimistic challenge-response protocol

– “fraud proofs”
● correct execution verified by blockchain on conflict

More complex stuff
● execution trees

– trustless sidechain bridges
– rollups

More complex stuff
● execution trees
● on-chain zero-knowledge proofs

– roll-ups

More complex stuff
● execution trees
● on-chain zero-knowledge proofs

– roll-ups

● a lot more I guess

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH

CTV / TXHASH
● enforce that tx looks a certain way
● CTV: enforce exact tx
● TXHASH: specify what you want to enforce

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes

Flexible sighashes
● ANYPREVOUT (APO)

– make signatures that don’t commit to inputs

● CTV/TXHASH + CHECKSIGFROMSTACK
– specify sighash in Script, then check signature

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state

Carrying state
● OP_VAULT: very specific state

● OP_CCV (CHECKCONTRACTVERIFY)
– carry 32 bytes of state into next output

● OP_TLUV (TAPLEAFUPDATEVERIFY)
– change spent taptree into a new taptree

● TXHASH + CAT + INTERNALKEY + TWEAKADD
– compose next output manually

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state
● OP_CAT

OP_CAT
● literally just concatenate two byte strings
● somehow enables basically every other opcode

– in the most horrible way

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state
● OP_CAT
● Great Script Restoration

Great Script Restoration
● re-enable various disabled opcodes

– including OP_CAT
– fix math opcodes

● introduce an execution budget
● better framework for additional opcodes

So...

Status update
● technically kinda ready**

– APO, CTV, CSFS, CAT, VAULT
– deployed on signets like Bitcoin Inquisition

● still under development
– GSR, CCV, TXHASH

Where to go from here?
● currently CTV + CSFS is on the table

– simulates APO
– relatively well-studied
– has significant benefits to existing protocols
– CTV is upgradable into TXHASH

Where to go from here?
● currently CTV + CSFS is on the table
● Great Script Restoration

– makes adding opcodes safer
– OP_CAT, TXHASH, TWEAKADD,

● state updates like CCV, TLUV

Thanks
● covenants.info
● slides: roose.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

