
  

Towards a Covenants Softfork



  

Who am I?
● Steven Roose
● bitcoin developer since 2012
● building Ark @ Second
● covenants.info



  

Upgrading Bitcoin
● What is “bitcoin”?
● universally accepted: consensus
● blockchain
● changes to consensus: chain forks

– hardforks
– softforks



  

Hardfork
● Let’s upgrade from ECDSA to Schnorr!
● output script: <pubkey> OP_CHECKSIGVERIFY

– witness: <ecdsa-sig>
– <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● upgrade to schnorr:
– <schnorr-sig> <pubkey> OP_CHECKSIGVERIFY
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Softfork
● Let’s upgrade from ECDSA to Schnorr safely!
● <ecdsa-sig> <pubkey> OP_CHECKSIGVERIFY

● use an unused opcode
● <schnorr-sig> <pubkey> OP_CHECKSCHNORRSIGVERIFY
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Softfork tools
● override only unused behavior

● OP_NOP
– -VERIFY opcodes

● Witness Program
– OP_PUSHNUM_0 <20/32 bytes>

– OP_PUSHNUM_1 <32 bytes>

● OP_SUCCESS
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Readiness Signaling
● only activate new rules if majority is ready to enforce
● BIP9: miners signal readiness for upgrades

– segwit: 95% of last 2016 blocks
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Technical Challenges
● bugs, bugs and more bugs

– incorrect behavior
– accidental hardforks

● technical debt
– impossible to remove consensus code
– maintenance burden



  

Political Challenges
● money is a social construction

– bitcoin is a social project

● we need “rough consensus”
● decentralized decision-making
● too loose: can reduce vigilance
● too strict: can reduce innovation



  

Covenants
● traditionally: “who can spend coins”
● covenants: “how can coins be spent”
● transaction introspection



  

We already sorta have covenants
● OP_CHECKSIG

– * Schnorr tricks with OP_CAT

● OP_CHECKLOCKTIMEVERIFY
● OP_CHECKSEQUENCEVERIFY



  

Some examples
● refund clauses



  

Refund Clauses
● Alice and Bob join their money together
● both want a refund guarantee
● current solution: pre-signing a refund tx
● covenants: refund clause on the joint output

– “can be spent if 1 btc go to Alice and 1 btc goes to Bob”

● reduced interactivity



  

Some examples
● refund clauses
● vaults, aka delayed spends



  

Vaults
● just relative timelocks fall short
● specify eventual destination when delay starts
● fallback clause within delay



  

Some examples
● refund clauses
● vaults, aka delayed spends
● payment pools / coinpools



  

Coinpools
● single UTXO owned by multiple people
● each user can exit individually

– leaving the remaining users in a new coinpool

● UTXO can live on cooperatively



  

Other possibilities
● eltoo / lightning symmetry



  

Lightning symmetry
● different Lightning Network channel design
● “rebindable signatures”

– SIGHASH_NOINPUT aka SIGHASH_ANYPREVOUT

● simplify channel state updates
● no more penalties
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DLCs
● oracle-based betting contracts
● computational complexity
● transferability & position splitting
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Ark
● alternative layer-two

– client-server but with unilateral exit

● VTXOs: off-chain or “virtual UTXOs”
● swap expiring VTXOs for new ones with server
● compatible with Lightning



  

More complex stuff
● execution trees

– MATT with covenants
– BitVM without covenants



  

Execution trees
● arbitrary program compiled to Script
● optimistic challenge-response protocol

– “fraud proofs” 
● correct execution verified by blockchain on conflict



  

More complex stuff
● execution trees

– trustless sidechain bridges
– rollups
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More complex stuff
● execution trees
● on-chain zero-knowledge proofs

– roll-ups

● a lot more I guess



  

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH



  

CTV / TXHASH
● enforce that tx looks a certain way
● CTV: enforce exact tx
● TXHASH: specify what you want to enforce



  

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes



  

Flexible sighashes
● ANYPREVOUT (APO)

– make signatures that don’t commit to inputs

● CTV/TXHASH + CHECKSIGFROMSTACK
– specify sighash in Script, then check signature



  

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state



  

Carrying state
● OP_VAULT: very specific state

● OP_CCV (CHECKCONTRACTVERIFY)
– carry 32 bytes of state into next output

● OP_TLUV (TAPLEAFUPDATEVERIFY)
– change spent taptree into a new taptree

● TXHASH + CAT + INTERNALKEY + TWEAKADD
– compose next output manually



  

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state
● OP_CAT



  

OP_CAT
● literally just concatenate two byte strings
● somehow enables basically every other opcode

– in the most horrible way



  

Some proposals
● CHECKTEMPLATEVERIFY / TXHASH
● flexible signature hashes
● carrying state
● OP_CAT
● Great Script Restoration



  

Great Script Restoration
● re-enable various disabled opcodes

– including OP_CAT
– fix math opcodes

● introduce an execution budget
● better framework for additional opcodes



  

So...



  

Status update
● technically kinda ready**

– APO, CTV, CSFS, CAT, VAULT
– deployed on signets like Bitcoin Inquisition

● still under development
– GSR, CCV, TXHASH



  

Where to go from here?
● currently CTV + CSFS is on the table

– simulates APO
– relatively well-studied
– has significant benefits to existing protocols
– CTV is upgradable into TXHASH



  

Where to go from here?
● currently CTV + CSFS is on the table
● Great Script Restoration

– makes adding opcodes safer
– OP_CAT, TXHASH, TWEAKADD, 

● state updates like CCV, TLUV



  

Thanks
● covenants.info
● slides: roose.io
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