Ark

a new Bitcoin layer 2 protocol

Who am I?

Who am I?

- Steven Roose

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years
- Liquid team @ Blockstream

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years
- Liquid team @ Blockstream
- rust-bitcoin

Lightning Network

- off-chain payment protocol

Lightning Network

- off-chain payment protocol
- connected graph of two-party channels

Lightning Network

- off-chain payment protocol
- connected graph of two-party channels
- inbound liquidity problem

What is Ark?

What is Ark?

- new layer 2 protocol for Bitcoin

What is Ark?

- new layer 2 protocol for Bitcoin
\rightarrow interoperable with Lightning

What is Ark?

- new layer 2 protocol for Bitcoin
\rightarrow interoperable with Lightning
- sharing UTXOs with many users: VTXOs

What is Ark?

- new layer 2 protocol for Bitcoin
\rightarrow interoperable with Lightning
- sharing UTXOs with many users: VTXOs
\rightarrow exchanging VTXOs for new VTXOs

What is (an) Ark?

What is (an) Ark?

- series of "Ark rounds"

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending VTXOs to create new ones

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending VTXOs to create new ones
\rightarrow one on-chain Bitcoin tx per round

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending VTXOs to create new ones
\rightarrow one on-chain Bitcoin tx per round
- single service provider: "ASP"

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending VTXOs to create new ones
\rightarrow one on-chain Bitcoin tx per round
- single service provider: "ASP"
\rightarrow coordinates \& provides liquidity

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending VTXOs to create new ones
\rightarrow one on-chain Bitcoin tx per round
- single service provider: "ASP"
\rightarrow coordinates \& provides liquidity
\rightarrow users always 100% in control of money

What is (an) Ark?

What is (an) Ark?

- efficient UTXO-style off-chain txs

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions
\rightarrow much simpler than Lightning

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions
\rightarrow much simpler than Lightning
- anyone can receive (no liquidity required!)

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions
\rightarrow much simpler than Lightning
- anyone can receive (no liquidity required!)
- VTXO expiry

Lightning

Lightning

- make Lightning payments from Ark

Lightning

- make Lightning payments from Ark
\rightarrow similar to regular Ark tx

Lightning

- make Lightning payments from Ark
\rightarrow similar to regular Ark tx
\rightarrow ASP functions as LSP*

Lightning

- make Lightning payments from Ark
\rightarrow similar to regular Ark tx
\rightarrow ASP functions as LSP*
- create Lightning channels inside Ark

Lightning

- make Lightning payments from Ark
\rightarrow similar to regular Ark tx
\rightarrow ASP functions as LSP*
- create Lightning channels inside Ark
\rightarrow Ark as "channel factory"

Lightning

- make Lightning payments from Ark
\rightarrow similar to regular Ark tx
\rightarrow ASP functions as LSP*
- create Lightning channels inside Ark
\rightarrow Ark as "channel factory"
\rightarrow cheap channels with expiry

Privacy

Privacy

- the ASP has full insight in txs

Privacy

- the ASP has full insight in txs
- solution: blinded coinjoins

Privacy

- the ASP has full insight in txs
- solution: blinded coinjoins
\rightarrow entire Ark round as anonymity set

Privacy

- the ASP has full insight in txs
- solution: blinded coinjoins
\rightarrow entire Ark round as anonymity set
\rightarrow similar to WabiSabi coin mixing

Thanks

- full technical explanation:
\rightarrow https://roose.io/presentations
- https://arkpill.me/
- Questions?

Understanding Ark

a new Bitcoin layer 2 protocol

Who am I?

Who am I?

- Steven Roose

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years
- Liquid team @ Blockstream

Who am I?

- Steven Roose
- Bitcoin dev for over 10 years
- Liquid team @ Blockstream
- rust-bitcoin

Understanding Ark

Understanding Ark

- no sales talk, just technical explanation

Understanding Ark

- no sales talk, just technical explanation
- from the ground up

Understanding Ark

- no sales talk, just technical explanation
- from the ground up
\rightarrow might slightly differ from other explanations

Understanding Ark

- no sales talk, just technical explanation
- from the ground up
\rightarrow might slightly differ from other explanations
- assume covenants*

Covenants

Covenants

- restriction on where the money in a UTXO can go

Covenants

- restriction on where the money in a UTXO can go
- for now: an output that can only be spent using a single pre-specified transaction

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d)
\end{aligned}
$$

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 \mathrm{~d})
\end{aligned}
$$

$S=$ ASP pubkey
$A^{*}=A+S$ OR (A after 7d)

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d)
\end{aligned}
$$

forfeit tx

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) }
\end{aligned}
$$

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d)
\end{aligned}
$$

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) } \\
\operatorname{cov}^{*} & =\operatorname{cov} \text { OR (S after 14d) }
\end{aligned}
$$

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) } \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R(S \text { after } 14 d)
\end{aligned}
$$

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d) \\
\operatorname{cov}^{*} & =\operatorname{cov} O R \quad(S \text { after } 14 d)
\end{aligned}
$$

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d) \\
\operatorname{cov}^{*} & =\operatorname{cov} O R \quad(S \text { after } 14 d)
\end{aligned}
$$

vTXO tree

$$
S=A S P \text { pubkey }
$$

$$
A^{*}=A+S \text { OR (A after 7d) }
$$

$$
\operatorname{cov}^{*}=\operatorname{cov} \text { OR (S after 14d) }
$$

Connectors

Connectors

- users only care about tx dep. chain

Connectors

- users only care about tx dep. chain
- simple 1-of-1 outputs owned by ASP

Connectors

- users only care about tx dep. chain
- simple 1-of-1 outputs owned by ASP
- ideally 0-value
\rightarrow rely on CPFP \& package relay

Connectors

- users only care about tx dep. chain
- simple 1-of-1 outputs owned by ASP
- ideally 0-value
- alternatively single chain
\rightarrow users sign multiple forfeit txs

vTXO tree

$$
S=A S P \text { pubkey }
$$

$$
A^{*}=A+S \text { OR (A after 7d) }
$$

$$
\operatorname{cov}^{*}=\operatorname{cov} 0 R(S \text { after 14d) }
$$

What is (an) Ark?

What is (an) Ark?

- series of "Ark rounds"

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending vTXOs to create new ones

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending vTXOs to create new ones
\rightarrow one on-chain Ark tx with vTXO \& connector outputs

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending vTXOs to create new ones
\rightarrow one on-chain Ark tx with vTXO \& connector outputs
- single service provider: "ASP"

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending vTXOs to create new ones
\rightarrow one on-chain Ark tx with vTXO \& connector outputs
- single service provider: "ASP"
\rightarrow coordinates \& provides liquidity*

What is (an) Ark?

- series of "Ark rounds"
\rightarrow atomic spending vTXOs to create new ones
\rightarrow one on-chain Ark tx with vTXO \& connector outputs
- single service provider: "ASP"
\rightarrow coordinates \& provides liquidity*
\rightarrow users always 100% in control of money

What is (an) Ark?

What is (an) Ark?

- efficient UTXO-style off-chain txs

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p
- anyone can receive (no liquidity required)

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p
- anyone can receive (no liquidity required)
- flexible round times

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p
- anyone can receive (no liquidity required)
- flexible round times
\rightarrow confirmation when Ark tx confirms

What is (an) Ark?

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p
- anyone can receive (no liquidity required)
- flexible round times
- vTXO expiry

What is (an) Ark?

- efficient UTXO-style off-chain txs
- only client-server interactions needed, no p2p
- anyone can receive (no liquidity required)
- flexible round times
- vTXO expiry
\rightarrow watchtower-based automatic VTXO refresh?

Ark round flow

Ark round flow

- ASP announces start of new round

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output
\rightarrow input liquidity \& potential change output (can be a vTXO too!)

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output
\rightarrow input liquidity \& potential change output (can be a vTXO too!)
- spenders sign their forfeit txs

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output
\rightarrow input liquidity \& potential change output (can be a vTXO too!)
- spenders sign their forfeit txs
\rightarrow using individually assigned connector output

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output
\rightarrow input liquidity \& potential change output (can be a vTXO too!)
- spenders sign their forfeit txs
\rightarrow using individually assigned connector output
- outputs of spenders that refuse signing are dropped

Ark round flow

- ASP announces start of new round
- spenders indicate input \& output vTXOs
- ASP assembles an Ark tx and sends it to spenders
\rightarrow vTXO tree output
\rightarrow connector tree output
\rightarrow input liquidity \& potential change output (can be a vTXO too!)
- spenders sign their forfeit txs
\rightarrow using individually assigned connector output
- outputs of spenders that refuse signing are dropped
\rightarrow ASP creates new Ark tx and spenders sign again, etc..*

Let's dig a little deeper

Lifting

- mechanism to enter and exit the Ark (boarding?)

Lifting

- mechanism to enter and exit the Ark (boarding?)
- non-interactive lift-in

Lifting

- mechanism to enter and exit the Ark (boarding?)
- non-interactive lift-in
\rightarrow straight from on-chain to vTXO

Lifting

- mechanism to enter and exit the Ark (boarding?)
- non-interactive lift-in
\rightarrow straight from on-chain to vTXO
- interactive lift-out

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after 7d }) \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R \quad(S \text { after } 14 d)
\end{aligned}
$$

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d) \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R \quad(S \text { after } 14 d)
\end{aligned}
$$

5 forfeit tx

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) } \\
\operatorname{cov}^{*} & =\operatorname{cov} O R \quad(S \text { after } 14 d)
\end{aligned}
$$

Lifting

- mechanism to enter and exit the Ark
- non-interactive lift-in
\rightarrow straight from on-chain to vTXO
- interactive lift-out

Lifting

- mechanism to enter and exit the Ark
- non-interactive lift-in
\rightarrow straight from on-chain to vTXO
- interactive lift-out
\rightarrow non-interactive unilateral exit always available

vTXO tree

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) }
\end{aligned}
$$

$$
\operatorname{cov}^{*}=\operatorname{cov} 0 R(S \text { after } 14 d)
$$

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) } \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R \quad(S \text { after } 14 d)
\end{aligned}
$$

Note on covenants

Note on covenants

- covenant construction desired

Note on covenants

- covenant construction desired
- OP_CHECKTEMPLATEVERIFY (CTV)

Note on covenants

- covenant construction desired
- OP_CHECKTEMPLATEVERIFY (CTV)
- OP_TXHASH / OP_TX

Note on covenants

- covenant construction desired
- OP_CHECKTEMPLATEVERIFY (CTV)
- OP_TXHASH / OP_TX
- OP_CHECKSIGFROMSTACK (on Liquid)

Note on covenants

- covenant construction desired
- OP_CHECKTEMPLATEVERIFY (CTV)
- OP_TXHASH / OP_TX
- OP_CHECKSIGFROMSTACK (on Liquid)
- SIGHASH_ANYPREVOUT* (aka SIGHASH_NOINPUT)
- possible on Inquisition testnet or Liquid right now

Without covenants: clArk

Without covenants: clArk

- use multisigs instead of covenants

Without covenants: clArk

Without covenants: clArk

- use multisigs instead of covenants

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A+B+S^{*} & =A+B+S \text { OR }(S \text { after } 14 d) \\
A^{*} & =A+S \text { OR }(A \text { after } 7 d)
\end{aligned}
$$

Without covenants: clArk

- use multisigs instead of covenants
\rightarrow all receivers cosign with ASP

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A+B+S^{*} & =A+B+S \text { OR }(S \text { after } 14 d) \\
A^{*} & =A+S \text { OR }(A \text { after } 7 d)
\end{aligned}
$$

Without covenants: clArk

- use multisigs instead of covenants
\rightarrow all receivers cosign with ASP
\rightarrow requires receivers online

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A+B+S^{*} & =A+B+S \text { OR }(S \text { after } 14 d) \\
A^{*} & =A+S \text { OR }(A \text { after } 7 d)
\end{aligned}
$$

Without covenants: clArk

Without covenants: clArk

- use multisigs instead of covenants
\rightarrow all receivers cosign with ASP
\rightarrow requires receivers online
\rightarrow (how about all senders?)

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A+B+S^{*} & =A+B+S \quad 0 R \quad(S \text { after } 14 d) \\
A^{*} & =A+S \quad O R \quad(A \text { after } 7 d)
\end{aligned}
$$

Without covenants: clArk

- use multisigs instead of covenants
\rightarrow all receivers cosign with ASP
\rightarrow requires receivers online
\rightarrow (how about all senders?)
- possible on Bitcoin today

$$
A+B+S^{*}=A+B+S \text { OR (S after 14d) }
$$

$$
A^{*}=A+S \text { OR (A after 7d) }
$$

You said Lightning?

You said Lightning?

- Lightning channel commitment vTXOs

You said Lightning?

- Lightning channel commitment vTXOs
\rightarrow Ark as "channel factory"

You said Lightning?

- Lightning channel commitment vTXOs
\rightarrow Ark as "channel factory"
\rightarrow requires periodic channel refresh

You said Lightning?

You said Lightning?

- Lightning channel commitment vTXOs

You said Lightning?

- Lightning channel commitment vTXOs
- HTLCs can be added directly as vTXOs

You said Lightning?

- Lightning channel commitment vTXOs
- HTLCs can be added directly as vTXOs
\rightarrow Lightning payment in Ark round

You said Lightning?

- Lightning channel commitment vTXOs
- HTLCs can be added directly as vTXOs
\rightarrow Lightning payment in Ark round
\rightarrow ASP acts as LSP and forwards payment

Addressing

Addressing

- $A^{*}=A+S$ OR (A after 7d)

Addressing

- $A^{*}=A+S$ OR (A after 7d)
- in theory many Miniscript policies seem possible
\rightarrow or(and(P, key(S)), after(7d, P))

Addressing

- $A^{*}=A+S$ OR (A after 7d)
- in theory many Miniscript policies seem possible
\rightarrow or(and(P, key(S)), after(7d, P))
- ideally a single Schnorr (FROST?) pubkey
\rightarrow optimal for taproot keyspend

Addressing

- $A^{*}=A+S$ OR (A after 7d)
- in theory many Miniscript policies seem possible
\rightarrow or(and(P, key(S)), after(7d, P))
- ideally a single Schnorr (FROST?) pubkey
\rightarrow optimal for taproot keyspend
- receiver gives a pubkey/policy to sender

Privacy

Privacy

- currently the ASP has full insight in txs

Privacy

- currently the ASP has full insight in txs
- solution: blinded coinjoins "à la WabiSabi"

Privacy

- currently the ASP has full insight in txs
- solution: blinded coinjoins "à la WabiSabi"
\rightarrow spenders get blinded tokens for input vTXOs

Privacy

- currently the ASP has full insight in txs
- solution: blinded coinjoins "à la WabiSabi"
\rightarrow spenders get blinded tokens for input vTXOs
\rightarrow redeem blinded tokens for output vTXOs

Privacy

- currently the ASP has full insight in txs
- solution: blinded coinjoins "à la WabiSabi"
\rightarrow spenders get blinded tokens for input vTXOs
\rightarrow redeem blinded tokens for output vTXOs
\rightarrow fixed denominations for vTXO values

But wait...

But wait...

- vTXO output pubkey reuse is a problem

But wait...

- vTXO output pubkey reuse is a problem
\rightarrow ASP can deanonymise receivers \& targetted senders

But wait...

- vTXO output pubkey reuse is a problem
\rightarrow ASP can deanonymise receivers \& targetted senders
- need new pubkey each vTXO \& round attempt

But wait...

- vTXO output pubkey reuse is a problem
\rightarrow ASP can deanonymise receivers \& targetted senders
- need new pubkey each vTXO \& round attempt
\rightarrow paynym/greenaddress-like solution

But wait...

- vTXO output pubkey reuse is a problem
\rightarrow ASP can deanonymise receivers \& targetted senders
- need new pubkey each vTXO \& round attempt
\rightarrow paynym/greenaddress-like solution
- out-of-band from sender to receiver? nostr?

But wait...

- vTXO output pubkey reuse is a problem
\rightarrow ASP can deanonymise receivers \& targetted senders
- need new pubkey each vTXO \& round attempt
\rightarrow paynym/greenaddress-like solution
- out-of-band from sender to receiver? nostr?
- using deterministic round-specific entropy?

Existing challenges

Existing challenges

- ASP can double spend txs in mempool

\square vTXOs output

Existing challenges

Existing challenges

- ASP can double spend txs in mempool

Existing challenges

- ASP can double spend txs in mempool
\rightarrow no inherent incentive

Existing challenges

- ASP can double spend txs in mempool
\rightarrow no inherent incentive
\rightarrow disincentive because of HTLCs

Existing challenges

- ASP can double spend txs in mempool
\rightarrow no inherent incentive
\rightarrow disincentive because of HTLCs
- LN-on-Ark txs don't care about confirmations

Existing challenges

- ASP can double spend txs in mempool
\rightarrow no inherent incentive
\rightarrow disincentive because of HTLCs
- LN-on-Ark txs don't care about confirmations
\rightarrow double-spend prevention with bond?

Existing challenges

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
\rightarrow increases with vTXO velocity

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
\rightarrow increases with vTXO velocity
\rightarrow depends on vTXO expiration parameter

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
\rightarrow increases with vTXO velocity
\rightarrow depends on vTXO expiration parameter
\rightarrow ASP can charge fees based on vTXO age

Existing challenges

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
- DoS by forcing many round restarts

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
- DoS by forcing many round restarts
\rightarrow penalties for abandoning a round

Existing challenges

- ASP can double spend txs in mempool
- high liquidity requirement
- DoS by forcing many round restarts
\rightarrow penalties for abandoning a round
\rightarrow attack incentive is small with larger round times

NEW: the Somsen Shortcut

NEW: the Somsen Shortcut

- send vTXOs outside Ark round

vTXO tree

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after 7d) }
\end{aligned}
$$

$$
\operatorname{cov}^{*}=\operatorname{cov} 0 R(S \text { after 14d) }
$$

shortcut tx

$$
\begin{aligned}
S & =A S P \text { pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d) \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R \quad(S \text { after } 14 d)
\end{aligned}
$$

NEW: the Somsen Shortcut

- send vTXOs outside Ark round
\rightarrow "building a state-chain from a vTXO"

connector output vTXOs output

vTXO tree

$$
\begin{aligned}
S & =\text { ASP pubkey } \\
A^{*} & =A+S \text { OR (A after } 7 d) \\
\operatorname{cov}^{*} & =\operatorname{cov} 0 R \quad(S \text { after } 14 d)
\end{aligned}
$$

NEW: the Somsen Shortcut

NEW: the Somsen Shortcut

- send vTXOs outside Ark round
\rightarrow "building a state-chain from a vTXO"

NEW: the Somsen Shortcut

- send vTXOs outside Ark round
\rightarrow "building a state-chain from a vTXO"
- makes clArk more feasible

Thanks

Thanks

- https://roose.io/presentations

Thanks

- https://roose.io/presentations
- https://arkpill.me/

Thanks

- https://roose.io/presentations
- https://arkpill.me/
- Questions?

